

1. Erfahrungsaustausch für den Gewässerschutz in der Landwirtschaft

Oktober 2011

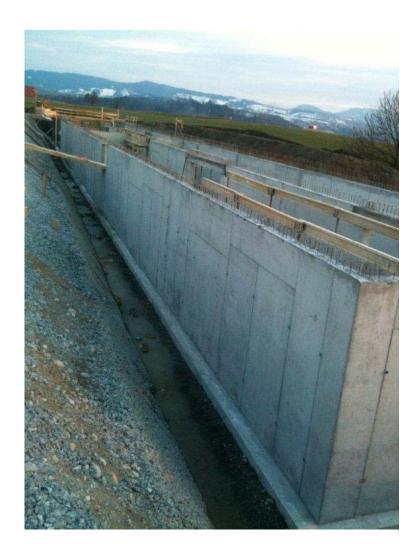
Projektprüfung und Zustandskontrolle von Jauchegruben

PETER OTT
Ingenieurbüro für Hoch- und Tiefbau AG

Dipl. Bauingenieure ETH/HTL/SIA Gemeindehaus. 8932 Mettmenstetten

Markus Zogg, dipl. Bauingenieur FH

- 1. Einführung
- 2. Projektprüfung
- 3. Statik
- 4. Konstruktive Ausbildung von Jauchegruben
- 5. Häufige Schäden und ihre Sanierung
- 5.1 neue Gruben
- 5.2 bestehende Gruben
- 5.3 Ausserbetriebnahme


Seite 2

PETER OTT

Ingenieurbüro für Hoch- und Tiefbau AG

Dipl. Bauingenieure ETH/HTL/SIA

1. Einführung

- 1. Einführung
- 2. Projektprüfung
- 3. Statik
- 4. Konstruktive Ausbildung von Jauchegruben
- 5. Häufige Schäden und ihre Sanierung
 - 5.1 neue Gruben
 - 5.2 bestehende Gruben
 - 5.3 Ausserbetriebnahme

Seite 3

PETER OTT

Ingenieurbüro für Hoch- und Tiefbau AG

Dipl. Bauingenieure ETH/HTL/SIA

2. Projektprüfung

- Kontrolle der Projektunterlagen:
 - Gewässerschutzbereich
 - konstruktive Ausbildung
 - Abmessungen
 - Volumen (neues, vorhandenes und erforderliches)
- Kontrolle der Statik
- Kontrolle der Schalungs- und Bewehrungspläne
- Bewehrungsabnahme erfolgt durch den projektierenden Ingenieur
 - → Ingenieurbestätigung einholen

(vgl. Richtlinie BAFU / BLW)

- 1. Einführung
- 2. Projektprüfung
- 3. Statik
- 4. Konstruktive Ausbildung von Jauchegruben
- 5. Häufige Schäden und ihre Sanierung
 - 5.1 neue Gruben
 - 5.2 bestehende Gruben
 - 5.3 Ausserbetriebnahme

Seite 4

PETER OTT

Ingenieurbüro für Hoch- und Tiefbau AG

Dipl. Bauingenieure ETH/HTL/SIA

3. Statik

Bewehrung von Güllebehältern:

Anforderung: Dichte Güllebehälter

Umsetzung: Begrenzung der Rissweiten

→ Mindestbewehrung (vgl. EMPA - Prüfbericht Nr. 439'327)

→ Konstruktive Massnahmen (siehe Punkt 4.)

Normen und Richtlinien:

- **SIA Normen** (v.a. SIA 260, 261, 262, 272)
- Richtlinie vom BAFU und BLW: Baulicher Umweltschutz in der Landwirtschaft, Bern 2011

- 1. Einführung
- 2. Projektprüfung
- 3. Statik
- 4. Konstruktive Ausbildung von Jauchegruben
- 5. Häufige Schäden und ihre Sanierung
 - 5.1 neue Gruben
 - 5.2 bestehende Gruben
 - 5.3 Ausserbetriebnahme

Seite 5

PETER OTT

Ingenieurbüro für Hoch- und Tiefbau AG

Dipl. Bauingenieure ETH/HTL/SIA

3. Statik

Ursachen von Rissen (u.a.):

(nach SIA 262, Art. 4.4.2.1.1)

- zu rasches Austrocknen des Betons
- **Temperatureinwirkung** (z.B. aus Hydratationswärme)
- Schwinden
- Lasteinwirkung
- aufgezwungene oder behinderte Verformung
- Frosteinwirkung

- 1. Einführung
- 2. Projektprüfung
- 3. Statik
- 4. Konstruktive Ausbildung von Jauchegruben
- 5. Häufige Schäden und ihre Sanierung
- 5.1 neue Gruben
- 5.2 bestehende Gruben
- 5.3 Ausserbetriebnahme

Seite 6

PETER OTT

Ingenieurbüro für Hoch- und Tiefbau AG

Dipl. Bauingenieure ETH/HTL/SIA

3. Statik

- Wasserführende Risse:

 auch feine Risse mit einer
 Stärke ≤ 0.2 mm
 können wasserführend sein!
- Bauwerksgrösse:
 - lange Gruben → höheres Rissrisiko
 - kurze Gruben → kleineres Rissrisiko

- 1. Einführung
- 2. Projektprüfung
- 3. Statik
- 4. Konstruktive Ausbildung von Jauchegruben
- 5. Häufige Schäden und ihre Sanierung
- 5.1 neue Gruben
- 5.2 bestehende Gruben
- 5.3 Ausserbetriebnahme

Seite 7

PETER OTT

Ingenieurbüro für Hoch- und Tiefbau AG

Dipl. Bauingenieure ETH/HTL/SIA

3. Statik

- Mindestbewehrung Abhängigkeiten:
 - Anforderung an Bauwerk (normal, erhöht, hoch)
 - aufgezwungene und behinderte Verformung
 - äussere Einwirkungen
 - Bauwerksgrösse
 - Bauteilstärke
 - Stababstand
 - Betonqualität

- 1. Einführung
- 2. Projektprüfung
- 3. Statik
- 4. Konstruktive Ausbildung von Jauchegruben
- 5. Häufige Schäden und ihre Sanierung
 - 5.1 neue Gruben
 - 5.2 bestehende Gruben
 - 5.3 Ausserbetriebnahme

Seite 8

PETER OTT

Ingenieurbüro für Hoch- und Tiefbau AG

Dipl. Bauingenieure ETH/HTL/SIA

3. Statik

- Mindestbewehrung
 - → Vorgabe SIA für dichte Bauwerke:
 - hohe Anforderungen (SIA 262, Art. 4.4.2)
 - Dichtigkeitsklasse 1 (SIA 272)
 - → Vorgabe Richtlinie für Jauchegruben:
 - erhöhte Anforderung für den Gewässerschutzbereich üB, Au, Ao
 - hohe Anforderung für die Gewässerschutzzone S3
- → Informieren des Bauherrn durch den Projektverfasser.

- 1. Einführung
- 2. Projektprüfung
- 3. Statik
- 4. Konstruktive Ausbildung von Jauchegruben
- 5. Häufige Schäden und ihre Sanierung
 - 5.1 neue Gruben
 - 5.2 bestehende Gruben
 - 5.3 Ausserbetriebnahme

Seite 9

PETER OTT

Ingenieurbüro für Hoch- und Tiefbau AG

Dipl. Bauingenieure ETH/HTL/SIA

- 4. Konstruktive Ausbildung von Jauchegruben
 - → Um ein dichtes und dauerhaftes Bauwerk zu erhalten, ist neben Planung und Bemessung den ausführungstechnischen Massnahmen hohe Aufmerksamkeit zu schenken (siehe auch Richtlinie):
 - Betonqualität
 - Etappierung von Bodenplatte und Wände
 - **Bewehrungs-Überdeckung** (min. 4cm, keine Plastikprod.)
 - Bindlöcher und Distanzhalter (keine Plastikprodukte)
 - Ausbildung von Arbeitsfugen
 - Abdichtung
 - Nachbehandlung von Beton (SIA 262, Art. 6.4.6)
 - keine Vertiefungen unter Bodenplatte (Zwangspunkte)

- 1. Einführung
- 2. Projektprüfung
- 3. Statik
- 4. Konstruktive Ausbildung von Jauchegruben
- 5. Häufige Schäden und ihre Sanierung
 - 5.1 neue Gruben
 - 5.2 bestehende Gruben
 - 5.3 Ausserbetriebnahme

Seite 10

PETER OTT

Ingenieurbüro für Hoch- und Tiefbau AG

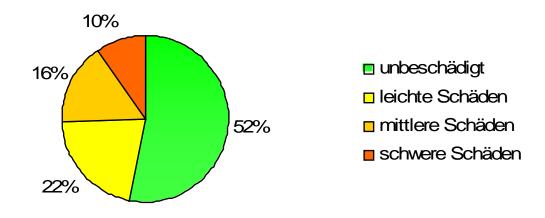
Dipl. Bauingenieure ETH/HTL/SIA

- 4. Konstruktive Ausbildung von Jauchegruben
 - Betonqualität (SIA 262):
 - NPK C, XC4, ...
 - → die zu erwartenden chemischen und physikalischen Belastungen berücksichtigen (Silosaft, Molke, etc.)
 - Abdichtung
 - Nachbehandlung (SIA 262, Art. 6.4.6):
 - Sommerschutzmassnahmen
 - Winterschutzmassnahmen

- 1. Einführung
- 2. Projektprüfung
- 3. Statik
- 4. Konstruktive Ausbildung von Jauchegruben
- 5. Häufige Schäden und ihre Sanierung
- 5.1 neue Gruben
- 5.2 bestehende Gruben
- 5.3 Ausserbetriebnahme

Seite 11

PETER OTT


Ingenieurbüro für Hoch- und Tiefbau AG

Dipl. Bauingenieure ETH/HTL/SIA

5. Häufige Schäden und ihre Sanierung

Zustandsübersicht von bestehenden Jauchgruben:

Zustandsübersicht Jauchegruben

Grundlage:

- 51 kontrollierte Gruben von 2007, Peter Ott AG

- 1. Einführung
- 2. Projektprüfung
- 3. Statik
- 4. Konstruktive
 Ausbildung von
 Jauchegruben
- 5. Häufige Schäden und ihre Sanierung
 - 5.1 neue Gruben
 - 5.2 bestehende Gruben
 - 5.3 Ausserbetriebnahme

Seite 12

PETER OTT

Ingenieurbüro für Hoch- und Tiefbau AG

Dipl. Bauingenieure ETH/HTL/SIA

- 5.1 häufige Schäden bei neuen Jauchegruben:
 - Risse

wasserführender Riss

abgedichtet mit Combiflex

- 1. Einführung
- 2. Projektprüfung
- 3. Statik
- 4. Konstruktive
 Ausbildung von
 Jauchegruben
- 5. Häufige Schäden und ihre Sanierung
- 5.1 neue Gruben
- 5.2 bestehende Gruben
- 5.3 Ausserbetriebnahme

Seite 13

PETER OTT

Ingenieurbüro für Hoch- und Tiefbau AG

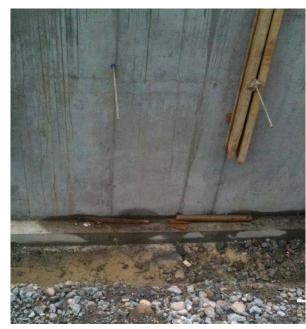
Dipl. Bauingenieure ETH/HTL/SIA

- 5.1 häufige Schäden bei neuen Jauchegruben:
 - Bindstellen

undichte Bindstellen

abgedichtet mit Combiflex

- 1. Einführung
- 2. Projektprüfung
- 3. Statik
- 4. Konstruktive Ausbildung von Jauchegruben
- 5. Häufige Schäden und ihre Sanierung
 - 5.1 neue Gruben
 - 5.2 bestehende Gruben
 - 5.3 Ausserbetriebnahme


Seite 14

PETER OTT


Ingenieurbüro für Hoch- und Tiefbau AG

Dipl. Bauingenieure ETH/HTL/SIA

- 5.1 häufige Schäden bei neuen Jauchegruben:
 - Arbeitsfugen

undichte Arbeitsfuge

abgedichtet mit Combiflex

- 1. Einführung
- 2. Projektprüfung
- 3. Statik
- 4. Konstruktive Ausbildung von Jauchegruben
- 5. Häufige Schäden und ihre Sanierung
- 5.1 neue Gruben
- 5.2 bestehende Gruben
- 5.3 Ausserbetriebnahme

Seite 15

PETER OTT

Ingenieurbüro für Hoch- und Tiefbau AG

Dipl. Bauingenieure ETH/HTL/SIA

- 5. Häufige Schäden und ihre Sanierung
 - 5.1 häufige Schäden bei neuen Jauchegruben:
 - Einlagen / Aussparungen (z.B. Sagex)

Aussparung mit Sagex

Aussparung zugemörtelt

- 1. Einführung
- 2. Projektprüfung
- 3. Statik
- 4. Konstruktive Ausbildung von Jauchegruben
- 5. Häufige Schäden und ihre Sanierung
 - 5.1 neue Gruben
 - 5.2 bestehende Gruben
 - 5.3 Ausserbetriebnahme

Seite 16

PETER OTT
Ingenieurbüro für Hoch- und Tiefbau AG

Dipl. Bauingenieure ETH/HTL/SIA

- 5.2 häufige Schäden bei bestehenden Jauchegruben:
 - Risse

gerissene Betonwand

div. Risse abgedichtet mit Combiflex

- 1. Einführung
- 2. Projektprüfung
- 3. Statik
- 4. Konstruktive Ausbildung von Jauchegruben
- 5. Häufige Schäden und ihre Sanierung
- 5.1 neue Gruben
- 5.2 bestehende Gruben
- 5.3 Ausserbetriebnahme

Seite 17

PETER OTT

Ingenieurbüro für Hoch- und Tiefbau AG

Dipl. Bauingenieure ETH/HTL/SIA

5. Häufige Schäden und ihre Sanierung

5.2 häufige Schäden bei bestehenden Jauchegruben:

• Einführungen von Leitungen

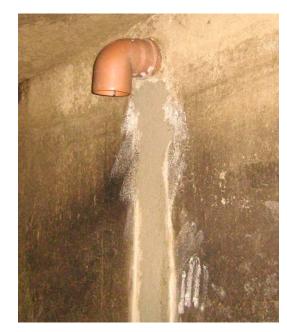
nachträglich erstellter Einlauf

Einlauf zugemörtelt

- 1. Einführung
- 2. Projektprüfung
- 3. Statik
- 4. Konstruktive Ausbildung von Jauchegruben
- 5. Häufige Schäden und ihre Sanierung
- 5.1 neue Gruben
- 5.2 bestehende Gruben
- 5.3 Ausserbetriebnahme

Seite 18

PETER OTT


Ingenieurbüro für Hoch- und Tiefbau AG

Dipl. Bauingenieure ETH/HTL/SIA

- 5.2 häufige Schäden bei bestehenden Jauchegruben:
 - Einleitung von Silowasser (aggressiv)

"ausgefressener" Beton

Einlauf zugemörtelt und verlängert mit Bogen

- 1. Einführung
- 2. Projektprüfung
- 3. Statik
- 4. Konstruktive Ausbildung von Jauchegruben
- 5. Häufige Schäden und ihre Sanierung
- 5.1 neue Gruben
- 5.2 bestehende Gruben
- 5.3 Ausserbetriebnahme

Seite 19

PETER OTT

Ingenieurbüro für Hoch- und Tiefbau AC

Dipl. Bauingenieure ETH/HTL/SIA

- 5.2 häufige Schäden bei bestehenden Jauchegruben:
 - nicht dichtigkeitsrelevante Schäden

"eingeschränkte" Tragfähigkeit einer Stütze

eingeschränkte Tragfähigkeit einer Decke

- 1. Einführung
- 2. Projektprüfung
- 3. Statik
- 4. Konstruktive Ausbildung von Jauchegruben
- 5. Häufige Schäden und ihre Sanierung
- 5.1 neue Gruben
- 5.2 bestehende Gruben
- 5.3 Ausserbetriebnahme


Seite 20

PETER OTT

Ingenieurbüro für Hoch- und Tiefbau A

Dipl. Bauingenieure ETH/HTL/SIA

- 5.3 Ausserbetriebnahme von Jauchegruben:
 - gemauerte Jauchegrubenwand

gemauerte Grubenwand

neue vorbetonierte Wand (Sanierungsvariante)

- 1. Einführung
- 2. Projektprüfung
- 3. Statik
- 4. Konstruktive Ausbildung von Jauchegruben
- 5. Häufige Schäden und ihre Sanierung
 - 5.1 neue Gruben
 - 5.2 bestehende Gruben
 - 5.3 Ausserbetriebnahme

Seite 21

PETER OTT

Ingenieurbüro für Hoch- und Tiefbau AG

Dipl. Bauingenieure ETH/HTL/SIA

- 5. Häufige Schäden und ihre Sanierung
 - **5.3 Ausserbetriebnahme von Jauchegruben:**
 - Jauchegrube mit Bollensteinwand

Vielen Dank für Ihre Aufmerksamkeit

Quellenangaben:

- SIA Normen (v.a. SIA 260, 261, 262, 272)
- Richtlinie vom BAFU und BLW:
 Baulicher Umweltschutz in der Landwirtschaft, Bern 2011
- EMPA Prüfbericht Nr. 439'327
- Peter Ott, Ingenieurbüro für Hoch- und Tiefbau AG, 8932 Mettmenstetten

Diese Präsentation gibt nur einen Überblick über die wichtigsten Punkte zur Planung einer Jauchegrube.